An Overview of Resealed Erythrocyte Drug Delivery

*R. P. Patel, M. J. Patel, and N. A. Patel

*Department of Pharmaceutics, S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Ganpat vidyanagar, Kherva, Mehsana-Gozaria Highway, PIN-390 001, Gujarat, India.

Received on: 22-01-2009; Accepted on: 19-03-2009

ABSTRACT
Among the various carriers used for drug delivery, erythrocytes (red blood cells, RBC) constitute potential biocompatible carriers since they possess several properties which make them unique and useful carriers. Erythrocytes are biocompatible, biodegradable, possess long circulation half lives, and can be loaded with a variety of biologically active compounds using various chemical and physical methods. This systemic review deals with advantages, requirement, methods of drug loading, characterizations, and application of erythrocyte mediated drug delivery.

Keywords: Erythrocyte mediated drug delivery, Carriers, Drug loading.

1. INTRODUCTION
Current research is aim at development of drug delivery system with maximum therapeutic benefits for safe and effective management of disease(s). The development of drug delivery system in future will be aimed to maximize therapeutic performance, eliminate undesirable side effect of drug and increase patient compliance. The idea of a drug-carrier system with target specificity has fascinated scientists and tremendous efforts have been made to achieve this goal.1 Erythrocytes, also known as red blood cell (RBCs), have been extensively studied for their potential carrier capabilities for the delivery of drugs and drug-loaded microspheres.2-4 Such drug-loaded carrier erythrocytes are prepared simply by collecting blood samples from the organisms of interest, separating erythrocytes from plasma, entrapping drug in the erythrocyte and resealing the resultant cellular carriers.5,6 Hence these carriers are called as resealed erythrocytes. The overall process is based on the response of these cells under osmotic condition. Upon reinjection, the drug-loaded erythrocytes serve as slow circulating depots and target the drug to a reticuloendothelial system (RES).5

2. Anatomy, physiology and composition of RBCs6
RBCs have shapes like biconcave discs with a diameter of 7.8 µm and thickness near 2.2 µm. Mature RBCs have a simple structure. It is also in elastic in nature. Their plasma membrane is both strong and flexible, which allows them to deform without rupturing as they squeeze through narrow capillaries. RBCs lack a nucleus and other organelles and can neither reproduce nor carry on extensive metabolic activities. RBCs are highly specialized for their oxygen transport function, because their mature RBCs have no nucleus, all their internal space is available for oxygen transport. Even the shape of RBC facilities it’s function. A biconcave disc has a much greater surface area for the diffusion of gas molecules in to and out of the RBC than would; say a sphere or a cube. The red blood cell membrane, a dynamic, semi-permeable components of the cell, associated with energy metabolism in the maintenance of the permeability characteristic of the cell of various cations (Na+, K+) and anions (Cl-, HCO3-). Each RBC contains about 280 million hemoglobin molecules. A hemoglobin molecules consists of a protein called globin, composed of four polypeptide chains; a ring like non-protein pigment called a heme, is bound to each of the four chains. At the center of the heme ring combine reversibly with one oxygen molecule, allowing each hemoglobin molecule to bind four oxygen molecules. RBCs include water (63%), lipids (0.5%), glucose (0.8%), mineral (0.7%), non-hemoglobin protein (0.9%), methemoglobin (0.5%), and hemoglobin (33.67%).

3. Advantages:7-16
- Biocompatible, particularly when autologous cells are used hence no possibility of triggered immune response.
- Natural product of the body, which are biodegradable in nature.
- Biodegradability with no generation of toxic products.
- Considerable uniform size and shape of carrier.
- Relatively inert intracellular environment can be encapsulated in a small volume of cells.
- Isolation is easy and large amount of drug can be loaded.
- Prevention of degradation of the loaded drug from inactivation by endogenous chemical.
- Entrapment of wide variety of chemicals can be possible.
- Entrapment of drug can be possible without chemical modification of the substance to be entrapped.
- Possible to maintain steady-state plasma concentration, decrease fluctuation in concentration.
- Protection of the organism against toxic effect of drug.
- Targeting to the organ of the RES.
- Ideal zero-order drug release kinetic.
- Prolong the systemic activity of drug by residing for a longer time in the body.
- Carrier for number of drugs.
- A longer life span in circulation as compared to other synthetic carrier.
not considered to be appropriate for encapsulation in erythrocyte membrane and cause deleterious effects on membrane structure are molecules which interact with the erythrocyte in their respective salts. Molecules that should be polar, hydrophilic, non-polar and hydrophobic molecules for drug loading into red blood cells.

4. Requirements for encapsulation

A wide variety of biologically active substance (5000-600,000 Daltons in size) can be entrapped in erythrocyte. Generally, the molecules should be polar, hydrophilic, non-polar and hydrophobic molecules have also been successfully. Sucrose is routinely used as a marker for encapsulation studies. Non-polar molecules may be entrapped in erythrocyte in their respective salts. Molecules which interact with the membrane and cause deleterious effects on membrane structure are not considered to be appropriate for encapsulation in erythrocyte

5. Methods of drug loading

Several methods can be used to load drugs or bioactive compounds in erythrocyte, include physical osmotic based systems and chemical methods. Different types of these methods summarized in table 1.

5.1 Osmotic method

In this process, the intracellular and extracellular solutes of erythrocytes are exchanged by osmotic lysis and resealing. The drug present will be encapsulated within the erythrocytes membrane by this process.

5.2 Electro-insertion or Electro-encapsulation

Electrical pulse method is used to encapsulate bioactive molecules. Also known as electroporation, the method is based on the observation that electrical shock brings about irreversible changes in an erythrocyte membrane. The use of transient electrolysis to generate desirable membrane permeability for drug loading into red blood cells. The components can be entrapped when an electric pulse of greater than a threshold voltage of 1-10 kV/cm is applied for 20-160 microseconds in media and released in osmotic medium. The potential difference across the membrane is built up either directly by inter- and intracellular electrodes or indirectly by applying internal electric field to the cells. The electromechanical compression of the membrane after breakdown leads to formation of pores. The extent of pore formation depends upon the electric field strength, pulse duration and ionic strength of the suspending medium. Once the membrane is perforated, regardless of the size of the pores, ions rapidly distribute between the extra- and intracellular space to attain Donnan equilibrium, however the membrane still remain impermeable to its cytoplasmic macromolecules.

5.3 Entrapment by Endocytosis

The vesicle membrane separates the endocytosed substance from the cytoplasm, which may shelter drugs prone to inactivation in erythrocytes or alternatively protect the erythrocytes from drug. The resulting erythrocytes contain vacuoles and probably have different in vivo survival characteristics from resealed cells, prepared using other methods. The swollen ghosts so prepared exhibit larger (>0.5 µ diameter) endocytic vacuoles. The drug substances are trapped in these endocytic vacuoles. Drug induced endocytosis is quite common and a variety of amphiphilic cations/drugs produce first stomatoctosis and then, mostly at the advancing lip of the stoma, inside-out endocytic vacuole formation. Several classes of drugs as reported by Schrier, 1987 can produce this phenomenon of visible investigation. This method is efficient for loading large particles such as virus (up to 100 nm dia.), enzyme and small molecules.

5.4 Loading by Chemical Perturbation of Membrane (Drug Mediated Loading)

This method is based upon the observation that the permeability of the erythrocytic membrane is increased, when it is exposed to some chemical agents. This allows the low molecular weight substances to get entrapped.

6. Characterizations

Table 2: Summary of characterization parameters & their determination for resealed RBCs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method / instrument used</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Physical characterization</td>
<td>Transmission electron microscopy, Scanning electron microscopy, Phase contrast microscopy, Optical microscopy</td>
</tr>
<tr>
<td>Vescle size and size distribution</td>
<td>Transmission electron microscopy, Optical microscopy</td>
</tr>
<tr>
<td>Drug release</td>
<td>Diffusion cell, dialysis</td>
</tr>
<tr>
<td>Drug content</td>
<td>Depletion of cell membrane followed by assay of released drug, radioisotopic</td>
</tr>
<tr>
<td>Surface electrical potential</td>
<td>Zeta potential measurement</td>
</tr>
<tr>
<td>Surface pH</td>
<td>pH-sensitive probes</td>
</tr>
<tr>
<td>Deformability</td>
<td>Capillary method</td>
</tr>
<tr>
<td>II Cellular characterization</td>
<td>Depletion of cell membrane followed by hemoglobin assay</td>
</tr>
<tr>
<td>% Hb content</td>
<td>Laser light scattering</td>
</tr>
<tr>
<td>Cell volume</td>
<td>Neubauer’s chamber, hematological analyzer</td>
</tr>
<tr>
<td>% cell recovery</td>
<td>Stepwise incubation with isotonic to hypotonic saline solutions and determination of drug and hemoglobin assay</td>
</tr>
<tr>
<td>Osmotic softness</td>
<td>Dilution with distilled water and estimation of drug and hemoglobin</td>
</tr>
<tr>
<td>Turbulent shock</td>
<td>Passage of cell suspension through 30-gauge hypodermic needle at 10 ml/min flow rate and estimation of residual drug and hemoglobin. Vigorous shaking followed by hemoglobin estimation</td>
</tr>
<tr>
<td>Erythromycin sedimentation rate</td>
<td>ESR method</td>
</tr>
<tr>
<td>III Biological characterization</td>
<td>Sterility test</td>
</tr>
<tr>
<td>Sterility</td>
<td>Rabbit method, LAL test</td>
</tr>
<tr>
<td>Animal toxicity</td>
<td>Toxicity tests</td>
</tr>
<tr>
<td>IV Miscellaneous</td>
<td>Cell size, mean cell volume, energy metabolism, lipid composition, membrane fluidity, rheological properties etc., density gradient separation</td>
</tr>
</tbody>
</table>

Table 3: Resealed erythrocytes used in RES targeting

<table>
<thead>
<tr>
<th>Treatment/Diseases</th>
<th>Name of Drugs</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of lysosomal storage diseases</td>
<td>Lysosomal enzymes, C-glucuronidase, 13-galactosidase and 6-glucosidase</td>
<td>To deliver lysosomal enzymes and drugs to lysosomes of the erythropagocytic cells</td>
<td>30</td>
</tr>
<tr>
<td>Treatment of Gaucher’s disease</td>
<td>Glucocerebrosidase</td>
<td>Loaded cells survived for 10 days in treated patient and no untoward reactions were found with respect to blood counts, blood pressure and renal functions.</td>
<td>31</td>
</tr>
<tr>
<td>Treatment of liver tumors</td>
<td>Anticancer like Bleomycin, Adriamycin, Carboplatin, Gentamycin, etc encapsulated in erythrocytes</td>
<td>Targeting to hepatic carcinomas.</td>
<td>32</td>
</tr>
<tr>
<td>Treatment of parasitic diseases</td>
<td>Pentamidine loaded, immunoglobulin-G coated erythrocytes</td>
<td>Targeting of drugs in the treatment of parasitic diseases in which the parasite resides in the organs of RES e.g. macrophage-containing Irishman.</td>
<td>33</td>
</tr>
<tr>
<td>Glutaraldehyde treated erythrocytes</td>
<td>Liver targeting of an antimarial agent - primaquine</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Photosensitized Erythrocytes</td>
<td>Glutaraldehyde treated erythrocytes</td>
<td>To promote excretion of iron in patients with excess body stores.</td>
<td>34</td>
</tr>
<tr>
<td>Removal of RES iron overload</td>
<td>Desferoxamine, an iron-chelating drug in erythrocyte ghosts</td>
<td>Antagonism of cyanide intoxication</td>
<td>35</td>
</tr>
<tr>
<td>Removal of Toxic Agents</td>
<td>Murine carrier erythrocytes containing bovine rhodanese and sodium thiosulphate</td>
<td>ORTo antagonize the lethal effects of potassium cyanide in mice.</td>
<td></td>
</tr>
</tbody>
</table>

7. Drug release characteristics of loaded drugs

There are mainly three ways for a drug to efflux out from erythrocyte carrier’s i.e. phagocytosis, diffusion through the membrane of the cell, and use of specific transport system. The rate of diffusion depends upon the rate at which a particular molecule penetrates through a lipid bilayer it is greatest for molecule with high lipid solubility and gradually goes down with polarity or charged groups of the molecule. Obviously, considerable control over the rate of drug release is possible by introducing or eliminating polar or charged substituent. Many substances enter cells by a specific membrane protein system because the carriers are proteins with many properties analogous to that of enzymes including both purine and pyrimidine nucleoside is transported extremely rapidly by facilitated diffusion. Prolongation of release could presumably be accomplished by entrapment of potent inhibitors of the appropriate transport protein along with the drug.

8. Toxicological, Immunological and Targeting Potential

The use of erythrocytes circulating blood carrier have shown no toxic effect as evident from animal studies. Resealed erythrocytes could be safely infused into patients and the loading at a high haematocrit value resulted into a long circulation time in vitro. The immunological characteristics of a drug carrier are of two types: the immunogenicity of the carrier itself and the ability of the carrier to protect an entrapped drug from immunological detection. Talwar & Jain was selectively targeted drug loaded resealed erythrocytes after gluteraldehyde treatment to the liver or spleen.24 They found that gluteraldehyde fixation of erythrocytes renders them resistant to both osmotic shock and turbulence induced lysis. It is concluded that, at low concentration gluteraldehyde treated cells are removed by spleen whereas at high concentration treated cells are removed by the liver.

9. Applications of Resealed Erythrocytes

Resealed erythrocytes have been proposed for a variety of applications in human and veterinary medicine. Various applications can be summarized as under:

a) In-Vitro Applications

Carrier RBCs have proved to be useful for a variety of in vitro tests. For in vitro phagocytosis cells have been used to facilitate the uptake of enzymes by phagolysosomes. Enzymes content within carrier RBC could be visualized with the help of cytochemical technique. The biochemical defects such as the glucose-6-phosphate dehydrogenase (G6PD) deficiency can be useful tool for discerning the mechanism that eventually causes these effects. The most frequent in vitro application of RBC is that of micro-injection. A protein or nucleic acid was injected into eukaryotic cells by fusion process. Similarly, when antibody molecules are introduced using erythrocytic carrier system, they immediately diffuse throughout the cytoplasm. Antibody RBC auto-injected into living cells has been used to confirm the site of action of fragment of diphtheria toxin. Antibodies introduced using RBC mediated micro-injection is recorded not to enter the nucleus, thus limiting the studies to the cytoplasmic level. Other in vitro tests include utilization of erythrocytes carrier to introduce ribosome inactivating proteins into cells by fusion technique.

b) In – Vivo Applications

i) Targeting of bioactive agents to RES System

Damaged erythrocytes are rapidly cleared from circulation by phagocytic Kupffer cells in liver and spleen. Resealed erythrocytes, by modifying their membranes, can therefore be used to target the liver and spleen. The various approaches to modify the surface characteristics of erythrocytes include surface modification with antibodies, gluteraldehyde, carbohydrates such as sialic acid and sulphodryl.

ii) Targeting to sites other than RES-rich Organs

Resealed erythrocytes have the ability to deliver a drug or enzyme to the macrophage-rich organs. Organ targeting other than RES have been tried recently with resealed erythrocytes. Some of the representative approaches are discussed in brief.

Table 4: Resealed erythrocytes used in other than RES organ targeting

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Type of drugs</th>
<th>Objective/Purpose</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet-responsive Erythrocyte Ghosts</td>
<td>encapsulation of small paramagnetic particles into erythrocytes</td>
<td>Localization to a particular location under the influence of external magnetic field.</td>
<td>36, 37</td>
</tr>
<tr>
<td>Photosensitized Erythrocytes</td>
<td>Methotrexate and photosensitized by subsequent exposure to a haematoporphyrin derivative.</td>
<td>A combination of chemotherapy and photodynamic therapy could be a useful modality in the treatment of tumors of body located at site other than RES predominant organs. OR As a photo-triggered carrier/delivery system for methotrexate in tumor therapy.</td>
<td>38</td>
</tr>
<tr>
<td>Antibody Anchored Erythrocytes (Immunoerythrocytes):</td>
<td>Antibody coating of resealed drug carrier erythrocytes</td>
<td>Drug targeting to the RES.</td>
<td>39</td>
</tr>
<tr>
<td>Ultrasound Mediated Delivery of Erythrocytes loaded drug(s):</td>
<td>colloidal particles and red blood cells</td>
<td>Delivery to tissue through micro vessel ruptures created by targeted micro bubble destruction with ultrasound.</td>
<td>40</td>
</tr>
</tbody>
</table>
iii) Erythrocytes as Circulating Bioreactors
Erythrocytes have been realized as carriers for enzymes to serve as circulating bioreactors. Sometimes it is desirable to decrease the level of circulating metabolites that can enter erythrocytes. Erythrocytes have also been used as circulating bioreactors for the controlled delivery of antiviral drugs.

Delivery of Antiviral Agents:
Several reports are available in the literature for the antiviral agents encapsulated in the resealed erythrocytes for effective delivery and targeting.

Table 5: Resealed erythrocytes for delivery of antiviral drugs

<table>
<thead>
<tr>
<th>Categories of Drugs</th>
<th>Name of Drugs</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azidothymidine</td>
<td>Azidothymidine homodinucleotide-loaded erythrocytes</td>
<td>Slow delivery of the antiretroviral drug azidothymidine</td>
<td>41</td>
</tr>
<tr>
<td>Deoxyctidine</td>
<td>Antiviral nucleotide analogues</td>
<td>Encapsulated into erythrocytes for targeting to macrophages</td>
<td>42</td>
</tr>
<tr>
<td>Aza-thioprene and Acyclovir</td>
<td>Heterodinucleotide of azidothymidine and acyclovir</td>
<td>Selective delivery to macrophage for protection against Human Immunodeficiency Virus or Herpes Simplex Virus</td>
<td>43</td>
</tr>
</tbody>
</table>

iv) Erythrocytes as Carriers for Drugs
Various bioactive agents encapsulated in erythrocytes are developed for the slow and sustained release in circulation to allow effective treatment of parasitic diseases. Resealed erythrocytes serve as an ideal carrier for antineoplastic agents, antimicrobial drug and vitamins and steroids.

v) Erythrocytes as Carriers for Enzymes
Enzymes can be injected into the blood stream to replace a missing or deficient enzyme in metabolic disorders or to degrade toxic compounds accumulated in the blood due to a disease likewise, environmental, lysosomal storage disorders such as Gaucher’s disease, hyperglycemia, hyperuricemia, hyperphenyl-alaninaemia and kidney failure are only few examples of metabolic disorders that can be treated by administration of enzymes.

Table 6: Resealed erythrocytes used in delivery of enzymes

<table>
<thead>
<tr>
<th>Name of Enzymes</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Asparaginase</td>
<td>For treatment of leukemia</td>
<td>44</td>
</tr>
<tr>
<td>Aminolevulinate dehydratase</td>
<td>To treat adolescent patient suffering from lead poisoning.</td>
<td>45</td>
</tr>
</tbody>
</table>

vi) Erythrocytes as Carriers for Proteins and Macromolecules

Table 7: Resealed erythrocytes used in delivery of proteins and macromolecules

<table>
<thead>
<tr>
<th>Name of Proteins</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>For its sustained release</td>
<td>46</td>
</tr>
<tr>
<td>Mycotoxins</td>
<td>For specific delivery of this highly toxic proteins to liver macrophages</td>
<td>47</td>
</tr>
<tr>
<td>Recombinant human erythropoietin (rhHuEpo)</td>
<td>A cellular sustained delivery system for in vivo administration</td>
<td>48</td>
</tr>
<tr>
<td>Aspirin and ferromagnetic colloid compound</td>
<td>Prevention of thromboembolism.</td>
<td>49</td>
</tr>
</tbody>
</table>

10. Novel approaches

a) **Nanoerythrosmes**
An erythrocyte based new drug carrier, named nanoerythrosome has been developed which is prepared by extrusion of erythrocyte ghosts to produce small vesicles having an average diameter of 100 nm. Daunorubicin (DNR) was covalently conjugated to the nEryt (nEryt-DNR) using glutaraldehyde as homobifunctional linking arm. This led to a complex that is more active than free DNR both *in vitro* and *in vivo*. Daunorubicin (DNR) conjugated to these nanoerythrosmes has a higher antineoplastic index than the free drug. Moreover, since nanoerythrosmes are particles, phagocytosis may be involved in their mechanism of potentiation.

b) **Erythrosomes**
These are specially engineered vesicular systems that are chemically cross-linked to human erythrocytes’ support upon which a lipid bilayer is coated. This process is achieved by modifying a reverse-phase evaporation technique. These vesicles have been proposed as useful encapsulation systems for macromolecular drugs.

REFERENCES:

34. J.D. Berman and M. Alikawa, Activity of Immunoglobulin G-Coated Red Cell Ghosts Containing Pentamidine Against Macrophage Contained Leishmania In Vitro, The American Journal of Tropical Medicine and Hygiene, 1984, 33, 1112.
50. Orehkova et. al., Local prevention of thrombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells, 1990, 57, 611.

Source of support: Nil, Conflict of interest: None Declared