Isolation of Phytoconstituents from the leaves of *Chenopodium album* Linn

Deenanath Jhade¹, Padmaa M Paarakh¹ ² and Usha Gavani¹

¹ Department of Pharmacognosy, The Oxford College of Pharmacy, Bangalore-560 078.

Received on:07-02-2009; Accepted on:22-05-2009

ABSTRACT

Fractionation of crude petroleum ether extract of the leaves of *Chenopodium album* Linn lead to the isolation of β-sitosterol (1), lupeol (2) and 3 hydroxy nonadecyl henicosanoate (3). Their structures were elucidated by spectroscopic methods such as UV, IR, NMR and LCMS. Compound 2 and 3 were isolated for the first time from this plant.

Keywords: *Chenopodium album* Linn; Isolation; β-sitosterol; lupeol; 3 hydroxy nonadecyl henicosanoate; spectroscopic method.

INTRODUCTION

Chenopodium album Linn (Chenopodiaceae) found wild up to an altitude of 4700 m and cultivated throughout India particularly Western Rajasthan, Kulu valley and Shimla. It is commonly known as Lamb’s quarte, wild spinach, white goosefoot in English (Wealth of India, 2001; Warrier PK et al., 2006). In tradition System of Medicine, it is used as an anthelmintic, antiphlogistic, antiarheumatic, contraceptie, odontalgic, laxative, cardiotic, anticorbutic, blood purifier, hepatic disorder, spleen enlargement, biliiousness, intestinal ulcers, digestive, carminative, aphrodisiac, dyspepsia, flatulence, strangury, seminal weakness, pharyngopathy, splenopathy, hemorrhoids, ophthalamopathy, cardiac disorder and general debility (Khare, 2007; Agarwal et al., 2005; Pramila et al., 2006; Panda, 2005). The phytoconstituents isolated so far from the plant are ascorbic acid, β-carotene, catechin, gallo catechin, caffeic acid, p-coumaric acid, ferulic acid, β-sitosterol, campesterol, xanthotoxin, stigmasterol, n-triacanotanol, imperatorin, ecdysteroid (Rastogi et al., 1998), cinnamic acid amide alkaloid (Della Greca et al., 2005), phenol, sapoin, apocartenoids (Della Greca et al., 2004), crytomeridiol (Cutilla et al., 2006), n-trans-fauruloyl-4-O-methyl dopamine and syringaresinol (Cutilla et al., 2005). In the present work, we have isolated β-sitosterol (1), lupeol (2) and 3 hydroxy nonadecyl henicosanoate (3) from the petroleum ether extract of dried leaves of *Chenopodium album*. Compound 2 and 3 were isolated for the first time from this plant.

MATERIAL AND METHODS

Plant material

Fresh leaves of *Chenopodium album* were collected, shade dried and authenticated by Dr. Shiddamallayya, N. Central Council

Corresponding author.

Dr. Padmaa M Paarakh, Principal and HOD; Department of Pharmacognosy, The Oxford College of Pharmacy, J.P.Nagar, I. Phase Bangalore 560 078

Tel.: + 91-9880681532

Telefax: +91-

E-mail: padmaparas@hotmail.com

A triterpenoid compound.

Its IR spectrum exhibited characteristic bands at 3288 cm\(^{-1}\) for hydroxyl group. The \(^1\)H-NMR as well as \(^13\)C-NMR data were found to be identical with the spectrum of those already reported earlier for lupeol (Lakshmi et al., 1975). It was further confirmed by TLC and CO-TLC method with the reference standard of lupeol.

Compound 3 was isolated as colorless compound. Its molecular formula was determined as C\(_{40}\)H\(_{80}\)O\(_3\) on the basis of mass spectrum by exhibiting a quasi molecular ion at m/z 609 (M +) and molecular weight was established as 608. Its IR spectrum exhibited characteristic band at 1736 cm\(^{-1}\) for carbonyl group and a broad band at 3400 cm\(^{-1}\) for hydroxyl group. The \(^1\)H-NMR spectrum showed a triplet signal at \(\delta\) 0.71 for methyl group and a strong signal at \(\delta\) 1.29 for long chain methylene protons. The triplet signal at \(\delta\) 3.92 and at \(\delta\) 3.10 is due to the methylene group attached to oxygen atom of the ester moiety and triplet at \(\delta\) 2.50 is due to methylene group attached to the carbonyl carbon. The signal at \(\delta\) 3.92 and at \(\delta\) 3.10 is attributed to a hydroxy methane group. With the above data and mass spectrum, the compound is identified as 3-hydroxy nonadecyl henicosanoate. Compound 2 and 3 were isolated for the first time from this plant.

ACKNOWLEDGEMENT

The authors wish to thank Chairman, Executive Director, Children’s Education Society; The Oxford College of Pharmacy, Bangalore for their facilities provided for this study and M/s Natural Remedies Pvt Ltd, Bangalore for the reference gift samples of \(\beta\)-sitosterol and lupeol.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared