Aconitine poisoning and its effects on various systems - A review

S. Shreya, Dhanraj Ganapathy

ABSTRACT

Aconitine is a major bioactive alkaloid which is extracted from monkshood (Aconitum napellus), a plant getting its name for its blue- to purple-colored flowers, that resembles a Monk’s hood. Aconitine belongs to the Aconitum genus of Ranunculaceae family and is frequently employed in herbal medicines for its anti-inflammatory, analgesic, antirheumatic, and cardiotonic actions. Other names of Aconitine are aconite, monkshood, women’s bane, devil’s helmet, queen of poisons, and blue rocket. It has anti-inflammatory and analgesic properties. Although it has pharmacological values, it can also induce severe arrhythmia and neurotoxicity. This kind of poisoning is called as aconite poisoning. Aconitine poisoning accidents caused by misuse of herb, suicide, or homicide have been reported in recent years as one cause for fatal death. This study reveals more on the herb and its toxic nature. Along with the above, the review also aims to provide some convincing evidence for forensic experts to identify the unexplained death with postmortem examination since it cannot be detected through clinical and pathological studies.

KEY WORDS: Aconitine, Poisoning, Herbal, Neurotoxicity

INTRODUCTION

Herbal medicines are commonly used as alternative medicines in Asian countries, more in China, to treat various diseases due to its natural, harmless, and less adverse effects for thousands of years. Aconitum plants have been extensively applied to treat multiple diseases in China and some other Asian countries. Traditional Chinese medicines are processed by soaking or boiling before consumption to reduce the toxicity.[3,4] In general, herbal poisoning may frequently occur due to inadequate processing and preparation, overdose, contamination, misidentification, and even in some suicidal or homicidal cases. However, it is difficult for forensic experts to find the specific results in present forensic autopsy of aconitine-induced death.[1,2,5]

Previous studies on Aconitum plants have shown its pharmacological properties such as anti-inflammatory, analgesia, and antirheumatism. In addition, aconitine could also suppress tumor growth and induce cell apoptosis by nuclear factor-κB signaling pathway in human pancreatic cancer, indicating that aconitine may serve as a potent therapeutic strategy for the treatment of several cancers.[6] However, the application of aconitine has been limited in clinical practice due to its toxic effects on the heart and nervous system.

To further clarify the potential risk of aconitine, the widespread application of toxicological characteristics and pharmacokinetics is reviewed.[7] Moreover, gastrointestinal, neurological, and cardiovascular symptoms were observed regularly in aconitine poisoning cases.

ACONITINE DOSAGING

With the increasing popularity of herbal drugs, herb-induced fatal poisoning cases have frequently happened as a result of inappropriate use of herbs in recent years. Aconitine, one of the abundant and high bioactive diterpenoid alkaloids, has a narrow therapeutic index, and it also brings great challenges to understand its appropriate dosage.[8,9]

Previous studies revealed the half-maximally lethal dose (LD$_{50}$) aconitine for mice is 1.8 mg/kg by oral administration, and the minimum lethal dose of oral administration in humans is evaluated to be 1–2 mg.[10]
Monoester-diterpenoid alkaloids are considered as hydrolyzed products of diester diterpenoid alkaloids (DDAs). Previous studies have discussed the LD₅₀ of aconitine for mice by intravenous injection is approximately 38 times of its hydrolysisates. Symptoms of aconitine poisoning frequently appear within 2 h or even several minutes through oral ingestion, indicating that it can be easily absorbed with oral administration. It has been demonstrated that aconitine can also be absorbed into systemic circulation through the human skin, leading to fatal and non-fatal poisoning. However, there is no specific antidote and the current treatment is mainly based on the supporting therapies. Nevertheless, it was reported that there were some effective treatment methods or medicines to improve cardiac arrhythmias in aconitine-induced poisoning accidents including charcoal hemoperfusion, amiodarone, magnesium, and lidocaine. On the one hand, aconitine is very unstable and decomposed easily in the human body. It is not detected routinely for common toxicology analysis in present forensic practice. Meanwhile, little attention is paid to aconitine poisoning in current clinical practice and medicolegal expertise.

ACONITINE TOXICOLOGY

It is rather difficult to define precisely the therapeutic dose and toxic dose of aconitine due to its narrow therapeutic index. The cardiotoxicity and neurotoxicity caused by inadequate consumption of aconitine have been occasionally reported in recent years. It has been reported that aconitine can reach relatively high concentrations in the liver, kidney, and heart following by oral intake of aconitine. Patients with aconitine poisoning generally present with a series of gastrointestinal, cardiovascular, and neurologic symptoms. The gastrointestinal features can be nausea, vomiting, diarrhea, and abdominal pain. Neurologic symptoms include numbness in mouth and limbs, paraesthesia, central nervous system depression, respiratory muscle depression, convulsions, and seizures. Cardiovascular manifestations predominantly include hypotension, palpitations, chest pain, bradycardia, sinus tachycardia, ventricular tachycardia, and ventricular fibrillation.

DETERMINATION OF ACONITINE POISONING

The ester groups combining with C8 and C14 are considered to be primarily responsible for the high toxicity of aconitine, while hydrolysis of esters can reduce its toxicity dramatically. Aconitine is not only well known for its pharmacology actions but also recognized as a toxic ingredient that needs to be processed properly to use it safely for humans. Aconitine can be hydrolyzed to less toxic benzyl aconine and aconine derivatives. Considering that the therapeutic dose and the toxic dose of aconitine are close, it is crucial to use safely as a medicine in clinical applications. Indeed, the establishment of the pharmacokinetic parameters of aconitine would be essential to make it play better pharmacological effects in clinics. Cytochrome P450 (CYP450) enzymes, belonging to membrane-bound hemoproteins, are involved in approximately 80% of phase I metabolism of drugs and play important roles in the oxidative metabolism of drugs and exogenous substances. CYP3A has been found to be the dominant CYP450 expressed in both the liver and intestine, and it principally catalyzes phase I metabolism of various alkaloids in human intestine and liver microsomes. Whether CYP450 enzymes are involved in aconitine metabolism has also been further investigated. It has been reported that aconitine is mainly metabolized by CYP3A and CYP1A1/2 into less toxicity derivatives in rat liver microsomes.

It should be noted that the detection of aconitine concentrations in body fluids plays a vital role in clinical and forensic toxicology analysis of suspected poisoning incidents. As aconitine can decompose or metabolize rapidly, it is also difficult to detect aconitine contents in human body fluids. In previous studies, some methods have been employed for detecting aconitine such as capillary electrophoresis, gas chromatography–mass spectrometry (MS), and high-performance liquid chromatography (LC). However, low selectivity and sensitivity have restricted the application of these methods to some extent. At present, LC tandem MS has developed a valid and precise method to analyze aconitine contents in blood and urine samples. Taking into account that aconitine is metabolized fast into several derivatives in animal and human models, accordingly, the findings of aconitine and primary metabolites in blood, urine, or herb medicine samples together with the important clinical manifestations will provide some indispensable evidence of aconitine poisoning in present forensic practice.

SYMPTOMS OF ACONITINE POISONING

Symptoms of aconitine poisoning and pathological changes in postmortem examination of aconitine, which has a narrow therapeutic window, are considered to be the principal highly toxic DDA in aconitum alkaloids. The incubation period between ingestion of aconitine and the onset of symptoms may be as short as several minutes, indicating that aconitine can be absorbed rapidly after oral administration by the upper gastrointestinal tract. Furthermore, the severity of symptoms appears to be related to the doses and time of exposure of aconitine. In particular, aconitine is also quickly decomposed or eliminated with a
short half-life. The signs of asphyxia are observed at autopsy including facial and nail bed cyanosis. Foamy liquid can be seen in the endotracheal cavity. The postmortem examination may find hemorrhagic points distributed on the surface of the heart and lungs. Moreover, the microscopic examination has been reported to reveal bilateral intrapulmonary hemorrhage and edema, congestion of multiple organs, and bilateral pleural effusions in different degree. It is necessary for forensic pathologists to exclude the presence of fatal diseases and physical injuries. Meanwhile, the results of toxicological analysis showed that aconitine and its derivatives were positive and other toxic substances and illegal drugs were negative in blood, gastric content, or urine samples of victims. In this situation, death was generally considered to be caused by aconitine poisoning.

EFFECT OF ACONITINE ON THE CARDIAC SYSTEM

Previous studies have revealed that aconitine could induce various types of life-threatening arrhythmias causing variations in heart rate such as bradycardia, nodal tachycardia, cardiac fibrillation, bidirectional ventricular tachycardia, and intraventricular block. Aconitine induced suppression of systemic lupus erythematosus and attenuate the pathologic impairment was confirmed by vivo experiment using murine model. Aconitine-induced arrhythmias were observed in the isolated atrium of rabbit, and the results showed that aconitine might directly stimulate sinus node and inhibit the propagation of impulses in some degree. Emerging evidence indicated that aconitine could block the inactivation of voltage-dependent sodium channels at the resting membrane potential causing sustained Na+ influx, therefore leading to arrhythmia. The aconitine-induced blockade of HERG and Kv1.5 in Xenopus laevis oocytes is considered to be one of the mechanisms of cardiac arrhythmias. Moreover, in H9c2 cells and cultured neonatal rat cardiomyocytes, aconitine could produce the inhibition effect on ultrarapid delayed rectifier K+ current in a time- and dose-dependent manner.

Ca2+ is one of the most important secondary messengers which plays crucial roles in the process of cell signal transduction and electrical activity of myocardial cells. Meanwhile, disruption of the intracellular Ca2+ homeostasis is an important mechanism of arrhythmic toxicity of aconitine. It is well known that aconitine can induce abnormalities of spontaneous beating rate, amplitude of spontaneous oscillations, and intracellular Ca2+ signals and increase the relative intracellular Ca2+ concentration in cultured primary cardiomyocytes, indicating that disruption of intracellular Ca2+ homeostasis generally contributes to the arrhythmic toxicity in aconitine-treated cardiomyocytes. Calcium regulatory proteins, including Na+-Ca2+ exchange (NCX1), ryanodine receptor (RyR2), dihydropyridine receptor (DHPR), and sarco-endoplasmic reticulum (SR) Ca(2+)-ATPase2 in sarcoplasmic reticulum, are capable of maintaining intracellular calcium homeostasis in myocardial cells. Previous publications have described that aconitine could damage myocardial cells, increase the expression of RyR2, and decrease the expression of NCX1 and DHPR-a1 significantly, thus leading to the unbalance of intracellular calcium homeostasis. The results of current research provided strong evidence that aconitine-induced arrhythmia was associated with intracellular Ca2+ signals and pre-treatment with aconitine reduced the sarcoplasmic reticulum Ca(2+)-ATPase expression and increased the expression of Na+/Ca2+ exchange in rat ventricular myocytes, which is consistent with the previous studies.

Connexin43 (Cx43) is the principal gap junction protein in the heart. Previous studies have demonstrated that Ser368, a protein kinase C site, is involved in the regulation of gap junction function. It is well known that the Ser368 remains phosphorylation status under normal circumstances. Aconitine could induce Cx43 and protein kinase C-a dephosphorylation and alter Ca2+ oscillation frequency, which probably is associated with cellular signal transduction, finally leading to cardiac toxicity in cultured neonatal rats cardiomyocytes.

More importantly, aconitine could also shorten action potential duration and reduce L-type calcium currents, thereby contributing to the proarrhythmic effects in human-induced pluripotent stem cell-derived cardiomyocytes. The effects of aconitine-caused arrhythmia and underlying mechanisms were further studied in human cardiomyocytes model. In addition, it is noteworthy that the NCX system plays a vital role in regulating cardiac contractility and electrical activity in different animal modes. KB-R9743 (KBR), a selective inhibitor of NCX in cardiac muscle, is capable of inhibiting aconitine-4. Gao et al. induced arrhythmias in guinea pigs and isolated ventricular myocytes.

Drug–DNA interaction is regarded as one of the reasons of the DNA damage of some drugs. The cytotoxicities of aconitine were further investigated in rat myocardial cell H9c2. The results showed that aconitine could exhibit cytotoxic activities including promotion of the apoptotic rate, inhibition of the growth of myocardial cells, and interaction with DNA by intercalation and electrostatic binding, implying that the aconitine-induced cardiac toxicity and DNA injury are correlated in a certain degree. Our study showed that aconitine could induce apoptosis...
of H9c2 cells at least in part through mitochondria-dependent apoptotic pathway.[40] However, the specific mechanism remains unknown and still needs further study.

EFFECT OF ACONITINE ON THE NEURAL SYSTEM

The neurotoxic effects of aconitine have been researched in different cell types. It was reported that aconitine could block neuromuscular transmission and cause depolarization in mice and frog skeletal muscles. More importantly, aconitine was reported to decrease the amplitude and block end-plate potentials and nerve action potentials, which contribute to neuromuscular blockade accompanied by excessive presynaptic depolarization in the rat isolated phrenic nerve-diaphragm muscles of rats.[41] Interestingly, a piece of published report demonstrated that aconitine could suppress delayed rectifier K+ current in differentiated NG108-15 neuronal cells and alterations in action potentials caused by aconitine might be concerned with abnormal neuronal excitability. Moreover, it has been confirmed that aconitine can induce epileptiform activity in rat neocortical and hippocampal slices with acute and extended excitatory effects.[42]

OTHER TOXIC EFFECTS

Published studies have indicated that aconitine has evident toxic effects on the growth of embryos and morphogenesis in rat embryo-cultured model. It has been reported that aconitine could cause cardiac defect, irregular somites, and brain malformation during the period of organ formation, suggesting that teratogenesis may be induced by aconitine in the process of embryonic development.[13] The long-term physiological effects of aconitine were also further investigated in mice by detecting the rectal temperature, body weight, and electrocardiogram, and the results revealed that the toxicity of aconitine might be decreased accompanied by chronic administrations and evaluated metabolic activity of aconitine. P-glycoprotein, encoded by the MDRI gene, is one of the important transporters in the apical member of mucosal cells in the intestine and excretes toxic substances into the intestinal lumen. It should be stressed that aconitine could dramatically increase the P-glycoprotein levels in mice and LS174T and Caco-2 cells, concomitantly reducing acute toxicity of aconitine and other drugs toxicity by drug–drug interactions.[43]

CONCLUSION

With the widespread use of Chinese herbal medicines, herb-induced poisoning may be frequently encountered in the world. Aconitum plants are used in China and some Asian countries for the treatment of various common medical problems such as pains, rheumatoid arthritis, and cardiac disorders. Aconitum alkaloids, mainly containing aconitine, hyperaconitine, and mesaconitine, are important representatives derived from the roots of plants in Aconitum genus.[44] Aconitine, a high bioactive diterpenoid alkaloid derived from Aconitum plants, not only has great medicinal value but also can cause serious poisonous effects which cannot be detected through clinical and pathological studies in a postmortem records. Despite this, based on the accumulation of traditional processing experiences and new techniques, aconitine can also be adequately processed to reduce its toxic effects and play better pharmacological effects. In our present review, we describe the toxicological effects of aconitine and further analyze aconitine poisoning cases in forensic practice. Further assessment of the underlying pharmacological properties and its safety profile are also required for better evaluation of its potential for clinical applications in future.

REFERENCES

Aconitum

Source of support: Nil; Conflict of interest: None Declared