Simultaneous UV Spectrophotometric Method for Estimation of Sitagliptin Phosphate and Simvastatin in Tablet dosage Form.

Sheetal Sharma*, Ankur Kothari, M.S. Harsoiya
SVCP, Khandwa Road, Indore, Madhya Pradesh, India.

Received on: 20-09-2011; Revised on: 15-10-2011; Accepted on: 10-12-2011

ABSTRACT

A simple, accurate, precise, reproducible, requiring no prior separation and economical procedures for simultaneous estimation of Sitagliptin Phosphate and Simvastatin in tablet dosage form have been developed. The method employs formation and solving of simultaneous equation using 267.0 nm and 238.0 nm as two analytical wavelengths for both drugs in methanol: water in a ratio of 90:10 (v/v). Sitagliptin Phosphate and Simvastatin at their respective λ_{max} 267.0 nm and 238.0 nm shows linearity in a concentration range of 10-50 µg/ml and 5-25 µg/ml respectively. The proposed method is recommended for routine analysis since it is rapid, simple, accurate and also sensitive and specific by no heating and no organic solvent.

KEY WORDS: Sitagliptin, Simvastatin, λ_{max}, Simultaneous equation method.

INTRODUCTION:

Sitagliptin (STG), (2R)-1-(2,4,5-trifluorophenyl)-4-oxo-4-{3-(trifluoromethyl)-5,6 dihydro [1,2,4] triazolo [4,3-α]pyrazin-7(8H)-yl] butan-2-amine (Fig. 1a) is a well known hypoglycemic drug. STG is a novel oral hypoglycemic drug of the dipeptidyl peptidase 4 inhibitor class. Sitagliptin increased incretin levels (GLP-I and GIP) which inhibit glucagon release, in turn decreases blood glucose, but more significantly increases insulin secretion. The determination of STG has been carried out in tablet by RP-HPLC by UV Spectrophotometry, RP-HPLC, UPLC. Laser diode thermal desorption tandem mass spectrometry, capillary electrophoresis.

Simvastatin (SMV), a methylated analog of lovastatin, is -(+)-{15,3R,7S,8S,8aR}-1, 2, 3, 7, 8, 8a-hexahydro-3,7-dimethyl-8-[2-(2,4,5-trifluorophenyl)-4-hydroxy-6-oxo-2H-pyran-2-yl]-naphthyl-2,2-dimethyl butanoate (Fig. 1b). It acts by inhibiting HMG CoA reductase and is used for the treatment of hypercholesterolemia. After oral administration, this prodrug is converted into β hydroxy acid of simvastatin, which is a potent inhibitor of HMG CoA reductase, a key enzyme required for the synthesis of cholesterol in liver. The determination of Simvastatin has been carried out in tablets by UV-Spectrophotometry, RP-HPLC, HPLC, HPTLC.

A literature review reveals that no analytical method (neither UV spectrophotometric nor any other method) is available for the simultaneous estimation of Sitagliptin and Simvastatin in tablet dosage form in pharmaceutical preparations, which prompted to the present work. The objective of the present work is to develop and validate new analytical methods for simultaneous determination of Sitagliptin and Simvastatin in tablet dosage form. This communication forms the first report of a simple, sensitive and reproducible method for the simultaneous estimation of Sitagliptin and Simvastatin from combined dosage form.

MATERIALS AND METHODS:

Materials: Spectral runs were made on Systronics (Double beam) UV-Visible spectrophotometer, model- 108 of 1 cm matched quartz cell having band width of 0.1 nm to develop analytical method over the range of 200-400 nm. Glasswears used in each procedure were soaked overnight in a mixture of chromic acid and sulphuric acid rinsed thoroughly with double distilled water and dried in hot air oven. Sitagliptin phosphate reference standard was procured from Bioplus life science, Bangalore while Simvastatin was provided by Ranbaxy, Dewas. The pharmaceutical preparation of combination of Sitagliptin phosphate and Simvastatin is Juvisync tablet (Merck & Co., India). Methanol of analytical grade was purchased from Merck & Co. All the solutions were protected for light and were analyzed on the day of preparations.

Selection of common solvent: Methanol of analytical reagent grade was selected as common solvent for developing spectral characteristics of drug. The selection was made after assessing the solubility of both the drugs in different solvents.

Preparation of Standard Stock Solution: Standard stock solutions containing Sitagliptin phosphate (STG) and Simvastatin (SMV) and were prepared individually by dissolving 10 mg of STG and 10 mg of SMV separately in 3 ml of methanol. It was then sonicated for 15 minutes and the final volume of both the solutions were made up to 10 ml with methanol to get stock solutions containing 1000 µg/ml each of STG and SMV in two different 10 ml volumetric flasks.

Procedure:

Determination of Absorption Maxima: Determination of absorption maxima by appropriate dilution of two standard drug solution with methanol, solutions containing 10 µg/ml of STG and 10 µg/ml of SMV were scanned separately in the range of 200-400 nm to determine the wavelength of maximum absorption for both the drugs. STG and SMV showed absorbance maxima at 267 nm (λ_{max}) and 238 nm (λ_{max}) respectively. The overlain spectra showed λ_{max} of both drugs and also isosbestic points at 252 nm (Fig. 3).
Sheetal Sharma et al. / Journal of Pharmacy Research 2012,5(1),444-446

Simultaneous equation method:
Two wavelengths selected for the method are 267 nm and 238 nm that are absorption maxima of STG and SMV respectively in methanol. The stock solutions of both the drugs were further diluted separately with methanol to get a series of standard solutions of 10-50 µg/ml and 5-25 µg/ml concentrations of STG and SMV respectively. The absorbances were measured at the selected wavelengths and absorptivities (A 1%, 1 cm) for both the drugs at both wavelengths were determined as mean of three independent determinations. Concentrations in the sample were obtained by using following equations-

\[C_i = \frac{A_{y_i}}{a_{y_i}} - \frac{A_{x_i}}{a_{x_i}} \quad \text{Eq. (i)} \]

\[C_j = \frac{A_{x_j}}{a_{x_j}} - \frac{A_{y_j}}{a_{y_j}} \quad \text{Eq. (ii)} \]

Where, \(A_i \) and \(A_j \) are absorbances of mixture at 208 nm and 237.5 nm respectively and \(a_{x_i} \) and \(a_{y_j} \) are absorbivities of SMV at \(\lambda_i \) and \(\lambda_j \) respectively. \(C_x \) and \(C_y \) are concentrations of STG and SMV respectively.

Application of the proposed method for the determination of LP and AB in tablets:
Twenty tablets of marketed formulation Juvisync tablet (Merck & Co., India) containing STG 100 mg and SMV 20 mg were weighed, and finely powdered. Tablet powder equivalent to 100 mg sitagliptin (which will contain SMV equivalent to 20 mg) was weighed and transferred to a 100 ml volumetric flask and volume was made up to 100 ml with Diluent (Methanol : water 90:10 v/v) to obtain concentration of 1000µg/ml. Resultant solution was filtered through Whatman filter paper. 1 ml of filtrate was taken in 10 ml volumetric flask and volume was made up to 10 ml with Diluent to obtain concentration of 100µg/ml. Appropriate aliquots of STG and SMV within the Beer’s law limit was taken. Absorbance of the sample solutions at 267.0 nm and 238.0 nm was measured and from the absorbance values, the concentration of drugs in the sample solution was determined by using Vierordt’s formula.

Table 1: Linear regression analysis of calibration curves with their respective absorptivity values.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>STG</th>
<th>SMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer’s law limit (µg/ml)</td>
<td>10.50 (µg/ml)</td>
<td>5.25 (µg/ml)</td>
</tr>
<tr>
<td>Correlation coefficient (r)</td>
<td>0.986</td>
<td>0.998</td>
</tr>
<tr>
<td>Molar absorptivity (lit/mole/cm)</td>
<td>1.85x10^4</td>
<td>2.03x10^4</td>
</tr>
<tr>
<td>Sandell’s sensitivity (mcg/Sq.cm.0.001)</td>
<td>3.5 x 10^4</td>
<td>4.97 x 10^4</td>
</tr>
<tr>
<td>Slope</td>
<td>0.0412</td>
<td>0.049</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.0317</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

Table 2: Results of analysis of tablet samples.

<table>
<thead>
<tr>
<th>Brand name</th>
<th>Sitagliptin Label Claim (mg)</th>
<th>% Purity*</th>
<th>Simvastatin Label Claim (mg)</th>
<th>% Purity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juvisync</td>
<td>100</td>
<td>99.5</td>
<td>20</td>
<td>99.8</td>
</tr>
</tbody>
</table>

*Denotes average of five determinations

RESULTS AND DISCUSSION:
The overlain spectra of STG and SMV exhibit \(\lambda_{max} \) of 267 nm and 238 nm for STG and SMV respectively which are quite separate from each other. Additionally one isosbestic point was observed at 252 nm. This wavelength was selected for simultaneous estimation of STG and SMV and it is assumed to be sensitive wavelength. Standard calibration curves for STG and SMV were linear with correlation coefficients (r) values in the range of 0.986- 0.998 at all the selected wavelengths and the values were average of three readings with standard deviation in the range of 0.002 – 0.003. The method was repeated for three different days and average % RSD was found to be 0.13 for STG and 0.39 for SMV.

CONCLUSIONS:
The developed spectrophotometric method is simple, accurate, precise and reliable for the simultaneous estimation of Sitagliptin Phosphate and Simvastatin in combined dosage form. The relative std. deviation (RSD) for all parameters was found to be less than one, which indicates the validity of method and assay results are also within the limit so the proposed method can be used for routine quantitative simultaneous estimation of both the drugs in multi-component pharmaceutical preparation.

ACKNOWLEDGEMENT:
The author thanks to Bioplus lifescience, Bangalore and Ranbaxy Dewas for supplying samples of Sitagliptin and Simvastatin.

REFERENCES:
Sheetal Sharma et al. / Journal of Pharmacy Research 2012, 5(1), 444-446

Source of support: Nil, Conflict of interest: None Declared