A Review on Plants a useful source of anti-cancer drugs

Sameer Mehndiratta1, Sunil Kumar1, Ajay Kumar Meena2, Surrinder Koul3, O P Suri4 and Kanaya Lal Dhar5

1Department of Pharmaceutical Chemistry, ISF College of Pharmacy, G.T. Road, Moga.
2National Institute of Ayurvedic Pharmaceutical Research, Moti Bagh Road, Patiala, India.
3Department of Bio-Organic Chemistry, IIM, Jammu Tawi.

Received on: 15-09-2010; Revised on: 18-10-2010; Accepted on: 13-12-2010

ABSTRACT

Plant-derived compounds have played very crucial role in the field of anti-cancer drugs. Various important anti-cancer agents like vincristine, vinblastin, camptothecin, paclitaxel and podophyllotoxin have been isolated from the various plant source. Most of the anticancer drugs act on tubulin site. Beauty of these drugs is planar structure because space between a & ß-subunit of tubulin is very less and planar compounds can fit in the gap and bind to ß-Subunit. Several new agents have been found against cancer including combretastatin A4 phosphate, aliphatic esters and lignans. The basic aim of this review is to explore the potential of newly discovered anticancer compounds, from natural resources, as a lead for anticancer drug development.

Key words: Anticancer drugs, Camptothecins, Combretastatins, Podophyllotoxins, Tubulin inhibitors.

INTRODUCTION

Cancer is an ailment that affects over 200 types of cells. Uncontrolled cell proliferation, differentiation and death of the invaded organs and tissues are the major characteristics. The major difficulties in the treatment of this ailment are toxicity, drug resistance and low specificity. Cancer is one of the most death causing diseases in humans. There is considerable scientific and commercial interest in the continuing discovery of new anticancer agents from natural product sources. The potential of using natural products as anticancer agents was recognized in the 1950s by the U.S. National Cancer Institute (NCI) and has since made major contributions to the discovery of new naturally occurring anticancer agents. The semi-synthetic and synthetic derivatives of active constituents derived from plants are important sources of antitumor drugs. Over 50% of the drugs in clinical trials for anticancer activity were isolated from natural sources or are related to the natural source for example Vinca alkaloids, vinblastine and vincristine, were isolated from Catharanthus roseus (Apocynaceae), similarly the lignans derivatives etoposide and teniposide are semi-synthetic derivatives of epipodophyllotoxin isolated from species of the genus Podophyllum (Berberidaceae), as well as the taxanes isolated from species of the genus Taxus (Taxaceae), the semi-synthetic derivatives of camptothecin, irinotecan and topotecan, isolated from Camptotheca acuminata (Nyssaceae), and several others.

Classification of Cancer

Cancers can be classified in two ways: by the type of tissue from which they arise and by the location in the body from which they start to grow. The first way is known as classification by histology and is defined internationally. The second method of classification is not very useful to clinicians, but the general public may find it easier to talk about cancers as being in the breast, or lung.

There are five major histological classifications:

Carcinoma: These cancers grow from epithelial tissue, which is tissue that makes up the outer and inner lining of the body. Carcinomas account for as much as 90% of all cancers.

Sarcoma: These cancers develop in supportive and structural body tissues, like bones, muscles, tendons, cartilage, and fat.

Myeloma: These cancers develop in the plasma cells of the bone marrow. These are cells that produce some of the proteins that circulate in the bloodstream.

Leukemia: These cancers are also called liquid cancers or blood cancers. They start in the bone marrow. They cause an overproduction of white blood cells that do not reach their mature form, but they can also cause cancerous growth of red blood cells.

Lymphoma: These cancers originate in the organs and tissues of the lymphatic system, including lymph nodes, spleen, or tonsils. Since lymph vessels circulate all through the body, a lymphoma may develop in the lymph system of any organ, such as the stomach, breast, or brain.

How Cancer Drugs Work

All cancer drugs on the whole show the same mechanism of action: They block the growth of living cells. But the way by which they achieve this goal differs on the basis of cellular functions on which each drug acts. The characteristics that lead to cell growth can be used against the cell, and this advantage is used in chemotherapy.

MECHANISM OF ACTION

1. By inhibiting Topoisomerase

Topoisomerase inhibitors are agents designed to interfere with the action of topoisomerase enzymes (topoisomerase I cuts one strand of a DNA double helix, relaxation occurs, and then the cut strand is reannealed and topoisomerase II cuts both strands of one DNA double helix, passes another unbroken DNA helix through it, and then reanneals the cut strand), which are enzymes that control the changes in DNA structure by catalyzing the breaking and rejoicing of the phosphodiester backbone of DNA strands during the normal cell cycle.

2. Interference with microtubule

Although it is widely accepted that antitubulin agents block cell division by inhibition of the mitotic spindle, the mechanism of action of antitubulin agents on microtubules remains to be determined. There are two types of mechanisms by which microtubule inhibitors can exert their chemotherapeutic effect.

Tubulin stabilizing agents

Normally the tubulin polymerizes to microtubulin and again microtubulin converts into tubulin and this process is in equilibrium. Generally 24-nm microtubulin bundles are formed which lead to cell multiplication process, but taxol makes stabler bundles of microtubulins of size 22 nm. There is a formation of unnatural bundles of microtubules due to defective polymerization process and thus no mitotic spindle. The cancerous cells do not have a check point to detect the absence of a spindle and cell cycle continue, which later leads to cell death. Because of this, taxol is sometimes also referred to as a spindle poison.

Tubulin destabilizing agent

According to McGown and Fox the trimethoxy benzene moiety in compounds like colchicine, podophyllotoxin and CA-4 probably provides a favourable binding site for tubulin. It has been concluded that both vinca alkaloids and CA-4, which are colchicine-like inhibitor act by preventing polymerization of mi

*Corresponding author.

Kanaya Lal Dhar,
Department of Pharmaceutical Chemistry,
ISF College of Pharmacy, G.T. Road, Moga,
Punjab 142001.
Tel.: + 91-9915587217
Email: dharkl@yahoo.com
plant hormones are promising leads for potential anticancer drugs. MDA-MB-468, LNCaP, and slightly in the DU-145 cells. Therefore, these lines. Experiments showed that BR treatment arrested MCF-7, MDA-MB-468 and LNCaP cells in G1 phase of the cell cycle and induced apoptosis in the intra-dimer interface and alters lateral contacts within the microtubule, blocking microtubule polymerization. On the other hand vinca alkaloids inhibit microtubule assembly by cross linking at the inter dimer interface; they sterically distort the protifilament and induce tubulin to form alternate spiral polymers.

3. By curbing blood supply to tumor cells.
CA-4P (combetastatin-A, 3-O phosphate) significantly reduces blood flow to the tumor cells in a dose-dependent manner as shown by Magnetic resonance imaging (MRI) experiments. Thus, it acted as an antivascular targeting agent, which blocks tumour blood supply. This study opened the new doors toward the new class of anticancer therapies those act by interfering a tumours blood supply. It is reported that it cause the shutdown of blood flow in many animals tumors leading to extensive tumour necrosis. A sodium phosphate derivative of CA-4 induced a complete vascular shutdown within metastatic tumors, while the reduction in blood flow by CA-4 is up to 70%.

4. By apoptosis induction:
One of the important processes in the development and tissue homeostasis is the Programmed cell death (apoptosis). This mechanism plays role when the cells are exposed to certain toxic agents. Apoptosis is an important process for eliminating cancer cells. Induction-apoptosis is a key mechanism by which anticancer compounds show their action.

Anti-cancer compounds obtained from various plants:
1) Brassinosteroids, Anticancer compounds from Brassica napus
- Biological Source: Rapeseed (Brassica napus)
- Family: Brassicaceae (mustard or cabbage family)
- Syn.: Rape, oilseed rape, rapa, rapaseed and canola

Brassinosteroids (BRs) are polyhydroxy steroidal plant hormones which play important regulatory roles in various physiological processes like growth, differentiation, root and stem elongation, and disease resistance etc. These were first explored nearly forty years ago by Mitchell et al. The yield of brassinosteroids from 230 kg of Brassica napus pollen was only 10 mg. This Brassinosteroids include more than 70 compounds which are distributed throughout the plant kingdom. BRs have been isolated from various parts of plant like seeds, fruits, leaves, galls and pollen. They are the most structurally similar to animal steroid hormones. Brassinolide, the most biologically active BR, was initially isolated from 200 kg of Brassica napus. It has also been isolated from Ophiopogon pumila and Mapia foetida.

2.5. Semi synthetic derivatives

Irinotecan Topotecan

Rubitecan Lurotecan

We have synthesized topotecan by new approach using methylene chloride as a single carbon source, under solid-liquid phase transfer catalysis, and a US patent has been granted for the process. (US Patent no. 6,600,861 December 9, 2003) . CPT shows anticancer activity mainly for solid tumours. It inhibits DNA topoisomerase I. It shows anticancer activity mainly against colon and pancreatic cancer cells. But its analogues show anticancer activity in breast, liver, prostate and many other malignancies.

1) Taxol, Anticancer compound from Taxus brevifolia
- Biological source: Bark of the Taxus brevifolia
- Family: Taxaceae
- Syn.: Pacific Yew or Western Yew

The discovery of camptothecin (CPT, 1) by M. E. Wall and M. C. Wani in 1996 as an anticancer drug with a unique mode of action, (Inhibition of DNA topoisomerase I) added an entirely new dimension to the field of chemotherapy. This cytotoxic quinoline alkaloid was first extracted from the stem wood of the Chinese ornamental tree Camptotheca acuminata. It has also been isolated from Ophiopogon pumila and Mapia foetida.

2.3. Mechanism of action
DNA topoisomerase-I inhibition progressively become irreversible with increasing concentration and exposure duration. It has also been found that camptothecin is selectively cytotoxic to S-phase cells, arrests cells in the G2 phase and induces fragmentation of chromosomal DNA.

2.2. Chemistry
It consists of a pentacyclic ring structure that includes a pyrrole (3,4b) quinoline moiety it has one asymmetric centre within the a-hydroxy lactone ring with 20(S) configuration (ring E).

28-homocastasterone 24-epibrassinolide

Both BRs inhibited cell growth in a dose dependent manner in the cancer cell lines. Experiments showed that BR treatment arrested MCF-7, MDA-MB-468 and LNCaP cells in G1 phase of the cell cycle and induced apoptosis in MDA-MB-468, LNCaP, and slightly in the DU-145 cells. Therefore, these plant hormones are promising leads for potential anticancer drugs.
Paclitaxel (Taxol) is a complex polyoxygenated diterpenoid mitotic inhibitor used in cancer chemotherapy. It was discovered in a National Cancer Institute program at the Research Triangle Institute in 1967. Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific Yew tree, Taxus brevifolia and named it ‘taxol’. Later on, it was isolated from several other species of taxus including Taxus wallichiana (the Himalayan yew). So far, more than 300 taxoids have been isolated and characterized from different species of taxus.

3.3. Mechanism of action
Taxol shows an unique mode of action by acting as microtubulin stabilizing agent.

3.2. Chemistry
It has been found to have a basic [9.3.1.0] pentadecane, tetracyclic ring system and it also has a N-benzoyl-b-phenylisoserine side chain attached at the C-13 hydroxyl as an ester linkage.

3.3. Mechanism of action
Taxol shows an unique mode of action by acting as microtubulin stabilizing agent.

4. Combretastatin A-4, anticancer compound from Combretum caffrum

4.1. Biological Source
Bark of Combretum caffrum

4.2. Family
Combretaceae

4.3. Syn
Combretaum caffrum

Combretastatins are antimitotic agents which were isolated from the bark of the South African tree Combretum caffrum. The most potent combretastatin A-4 [cis-1-(3,4,5-trimethoxyphenyl)- 2-(3'-hydroxy-4'-methoxy phenyl) ethene] is a stilbene which compete with colchicine for binding site on tubulin. CA-4 is a potent cytotoxic agent which strongly inhibits the polymerization of brain tubulin by binding to the colchicine site. CA-4 is thus a promising lead molecule for the development of anticancer drugs. Combretastatin A-1 is also a potent cytotoxic agent.

4.3. Mechanism of action
Combretastatin is a member of the colchicine-like inhibitors of microtubulin. CA-4P (combretastatin-4, 3-O phosphate) significantly reduces blood flow to the tumour cells in a dose-dependent manner.

2. Chemistry and Isolation
In 1982 Pettit et al isolated, biologically active bibenzyls, stilbenes and phenantherenes from the bark of African willow tree C. caffrum at Arizona State University, USA. Combretastatins A-1 and A-4 were isolated by the same group in 1987 and 1989, respectively. Chemically, these stilbene derivatives have two phenyl rings separated by a C-C double bond. Three methoxy groups are there in Ring-A at 3,4,5-positions while in ring B one hydroxyl group is at the C-3 and one methoxy group at the C-4 position.

5.3. Mechanism of action
Podophyllotoxin inhibits assembly of microtubules and supposed to arrest the cell cycle in metaphase. This shows its effect by blocking the catalytic activity of DNA topoisomerase II. It also binds at the colchicine site of the tubulin.

5.2. Chemistry
Chemically, it is found to be an aryltetralin lignan, having a lactone ring.

CA-4 analogues having different moiety; azetidinone and novel sulfonate analogues. CA-4 is found to be active against colon, lung and leukaemia cancers. It is stated that it is the most cytotoxic phytomolecule isolated so far.

The key feature of structurally diverse molecules, like Combretastatins, chalcones, benzophenones and lignans, to share same activity as tubulin inhibitors can be explained on the basis of “Butterfly model” that is from the molecular model view the two aromatic rings in these molecules are arranged like the two wings of butterfly leading to have cisoid disposition of these molecules.

1. Podophyllotoxin, anticancer compound from Podophyllum peltatum

Biological Source: Rhizome of American Mayapple (Podophyllum peltatum).

Family: Berberidaceae

Syn.: Hogapple, Indian apple, mayflower, Umbrella plant (shape of the leaves), Wild lemon (flavor of the fruit), Wild mandrake, American mandrake (shape of rhizomes) or “devil’s apple”

Podophyllotoxin inhibits assembly of microtubules and supposed to arrest the cell cycle in metaphase. This shows its effect by blocking the catalytic activity of DNA topoisomerase II. It also binds at the colchicine site of the tubulin.

5.2. Chemistry
Chemically, it is found to be an aryltetralin lignan, having a lactone ring.
5. Semi synthetic and synthetic epipodophyllotoxin derivatives

In various experiments podophyllotoxin showed strong cytotoxic activity against various cancer cell lines. It is found to be effective in the treatment of Wilms tumours, non-Hodgkins and in various genital tumours as well as in other lymphomas and lung cancer.24 Due to complicated side effects PDT as such is not used as a drug.25 Many structure modifications were performed to obtain more potent and less toxic anticancer agents, such as epipodophyllotoxin, etoposide and teniposide. These are the most widely used derivatives for the treatment of lymphomas, acute leukemia, testicular cancer, small cell lung cancer, ovarian, bladder, brain cancers, etc.

6. Anticancer compound from Saxifraga stolonifera (L.) Meeb22

Biological source: Whole plant of Saxifraga stolonifera (L.) Meeb
Family: Saxifragaceae

It has been found that some flavones and polyphenols present in traditional Chinese medicines decrease various types of experimental carcinogenesis.22 Saxifraga stolonifera (L.) Meeb a traditional chinese plant which is a dicotyledon, is a perennial herbaceous plant grow at an altitude of 390–3600 m in China, Russia, Japan and Korea. The whole plant is known for its use in Chinese medicines to treat various diseases like measles, typhus, hemorrhoids, hemoptysis, piles, and hair fall.23 Constituents and extracts of S. stolonifera can block tumors at various sites as indicated by various pharmacological experiments, e.g. gastric, prostate, breast and leukemia. It has also been reported that S. stolonifera can inhibit proliferation of cancer cells in vivo by induction of apoptosis.22

6.6. Mechanism of Action

One of the important processes in the development and tissue homeostasis is the Programmed cell death (apoptosis).

6.2. Method of Isolation

The isolation process for different constituents from Saxifraga stolonifera 22.

6.3. Chemistry

Various compounds have been isolated from ethanol extracts and identified as (1) n-C31H64,(2) (n-C17H35)2CO (3) â-sitosterol (4) n-C29H60 (5) Bergenin (6) Protocatechuic acid (7) Gallic acid (8) Quercitrin 3-O-â-L-rhamnopyranoside (9) Quercetin (10) Quercetin 3-O-â-D-glucopyranosyl-2- (hydroxyoctadecanoyl)amido-4,8-octadecadiene-1,3-diol. Recently 11 more chemical constituents have been identified in the dichloromethane extract of Typhonium flagelliforme.25

(1) pheophorbide-a (2) pheophorbide-a’ (3) pyropheophoride-a (4) methyl pheophorbide-a (5) hexadecanoic acid (6) oleic acid (7) linoleic acid (8) linolenic acid (9) campesterol (10) stigmasterol and (11) sitosterol. Although 1-4 are the main constituents but anticancer effect of Typhonium flagelliforme may be due to synergic effect of several substances because evidence shows that the individual constituents of the plant were not as active as the fraction, which is of a combination of all these substances.

7. Anti-cancer compound from Typhonium flagelliforme24

Biological Source: Juice of whole plant Typhonium flagelliforme
Family: Araceae
Syn.: Rodent tuber (English), Keladi tikus (Malay)

It is a herbal plant which is used in Malaysia to treat various types of cancer

7.6. Mechanism of action24

It exerts its anticancer effect by inducing apoptosis in the cells as confirmed in invitro experiments on NCI-H23 cell lines.

7.2. Isolation and Chemistry24

Many chemical constituents have been isolated but none has been tested for the anticancer activity. Isolated chemical constituents include phenyltridecanoic acid, methyl 13-phenyltridecanoate, several aliphatic esters, coniferin, its methyl derivative, â-sitosterol, â-daucosterol and 1-O-â-glucopyranosyl-2- (hydroxyoctadecanoyl)amido-4,8-octadecadiene-1,3-diol. Recently 11 more chemical constituents have been identified in the dichloromethane extract of Typhonium flagelliforme.

Tabebuia impetiginosa is an evergreen, canopy tree and has rosy (or purple) flowers. This plant is indigenous to the Amazon rain forest, but found all over Argentina, Bolivia, Brazil, Colombia, Ecuador, French etc. This plant is commonly known as Pau d’arco (bowtree) in Portuguese. Its common names are ipê roxo (red thick bark), taehebo (ant wood), tajy (“to have strength and vigor”) and red (or purple) lapacho.29 The family name Tabebuia has been derived from an Indian language spoken in Brazil, while the species name impetiginosa has been derived from the use of the bark against impetigo.

8.4. Mechanism of action29

As reported â-lapachone showed ability to inhibit topoisomerase I. Reported that â-lapachone inhibited catalytic activity of eukaryotic topoisomerase I, but not topoisomerase I-mediated DNA cleavage. Another mechanism by which â-lapachone shows it anticancer activity was given by Lee and co-workers. They showed that â-lapachone exerts its effect by re-activating the apoptotic pathways which cleared the cancerous cells from the body through an increase of Bax/Bcl2 and activation of Caspase 3. It also cause loss of prostaglandin-E2 and telomerase activity by inhibition of COX-2 and hTERT expression.

8.2. Isolation29

Active constituents were isolated from methanolic extract and many techniques were applied for the isolation, like solvent assisted flavour evaporation (SAFE), Steam distillation under reduced pressure, followed by continuous liquid-to-liquid
8.3. Chemistry and Structures of compounds

There are a number of naturally occurring compounds in the bark and heartwood of Red Lapacho, particularly in the methanolic extract (Park et al., 2004)11, mainly these compounds are flavonoids, cyclopentene dialdehydes, benzoic acid and benzaldehyde derivatives, quinones, furanonaphthoquinones and, most importantly, naphthoquinones and anthraquinones12. Lapachol and β-lapachone were the two main compounds among the numbers of the isolated compounds but lapachol was discarded by the NCI because it lacked anticancer chemotherapeutic value, on the other hand β-lapachone has been selected as a research molecule in cancer therapy.

![Chemical Structure of Lapachol and β-lapachone](image)

It is said about the Red Lapacho that it is one of the “miraculous” cures for cancer and tumours. It has attracted quite attention in Brazil and Argentina as a ‘wonder drug’13.

As reported Tabebuia impetiginosa has shown activity against the many cancer cell lines like: carcinoma (Walker 256), prostate cancer (DU-145, PC-3, LNCaP)14, human promyelocytic leukaemia (HL-60), breast carcinoma, ovarian carcinoma, epidermoid laryngeal carcinoma (HEp-2)15, radio-resistant human malignant melanoma (U1-Mel) also against human breast cancer (MCF-7: W8)16, human lung adenocarcinoma (A549), human cervical cancer (HeLa) and osteosarcoma (HuO9)17.

9. Anti-cancer compounds from *Polyalthia cerasoides* seeds18

Biological source: *Polyalthia cerasoides* (Roxb.)Bedd.

Family: Annonaceae

Polyalthia cerasoides (Roxb.)Bedd. (Annonaceae) is a medium sized tree which is found in almost all forests of Deccan India up to 3000 ft. The stem bark of this plant is used as tonic to combat stress (Padma et al.2001)17 by clinicians of Tamilnadu, India. The active constituents of the plant have antibacterial, antifungal, cytotoxic and antimalarial properties.

9.2. Isolation & Structure18

![Chemical Structure of Clerodane diterpinoid and Spinasterol](image)

9.4. Mechanism of action

Initial experimental results had shown that the compounds induce apoptosis treated cells showed apoptotic morphology, condensed nuclei, membrane blebbing and formation of apoptotic bodies compared to control cells, which had cellular and nuclear architecture19. Results showed that Clerodane diterpenoids induce apoptosis by topoisomerase poisonning (Richter et al.2004)20 and phytoestrogens induce apoptosis by Bax activation (Choi et al. 2003)21. α-Spinasterol is also proved to be a potent inhibitor of glomerular mesangial cell proliferation and its inhibitory potency was found to be 1000 times higher than that of simvastatin. Isolated compounds showed Anti-proliferative activity against colon cancer cell lines (Caco2)22.

10. Anticancer catechol from *Semecarpus anacardium*23

Biological Source: Fruits of *Semecarpus anacardium*

Family: Anacardiaceae

Syn.: Bhallatalak, Ker beeea, Marking Nut

Semecarpus anacardium is a tropical tree growing wild in the Indian subcontinent, the fruits of this plant are used extensively for the treatment of human cancers in the Ayurvedic medicine. “Kalpaamruthaa” is nut milk extract of *semecarpus anacardium*, used in Sidda medicine which have antioxidant, analgesic, antipyretic and ulcerogenic properties. The nut extract also possess antitumor activity due to the suppression of hypoxic and angiogenic factors (hypoxia inducible factor-1 alpha, vascular endothelial growth factor, and inducible nitric oxide synthase). It is reported by Chakraborty et al., that the oil of *semecarpus anacardium* nut have cytotoxic effects against acute myeloblastic leukemia (HL-60), chronic myelogeinc leukemia (K-562), breast adenocarcinoma (MCF-7) and cervical epithelial carcinoma (HeLa) cell lines24.

10.2. Isolation

![Chemical Structure of 3-(8'(Z), 11'(Z)-pentadecadienyl)catechol](image)

Chemical structure of 3-(8'(Z), 11'(Z)-pentadecadienyl) catechol.

It was found to be active against Colon cancer cell lines, Breast cancer cell lines and Multidrug resistance cell lines as well.

11. Vinca alkaloids from *Cantharanthus roseus*25

Biological source: Dried whole plant of *Cantharanthus roseus*

Family: Apocynaceae

Syn.: Catharanthus, Periwinkle, Madagascar, Sadahbar

11.3. Mechanism of action

Vinca alkaloids are anti-mitotic and anti-microtubule agents. Vincristine shows it action by acting as antimitotic agent and arresting mitosis at the metaphase Vinblastine arrest mitosis at metaphase and also shows interference in amino acid synthesis by tumors cells

11.2. Chemistry

The vinca alkaloid antimitotic agents are asymmetrical dimeric compounds

11.4. Structure

![Chemical Structure of Vincristine and Vinblastine](image)

Vincristine \(R = \text{CH}_2 \)
Vinblastine \(R = \text{CHO} \)

Vindesine

Vinorelline Breast cancer and non-small cell lung cancer.
Table. Various other plants which possess anticancer activity and their chemical constituents

<table>
<thead>
<tr>
<th>S.No</th>
<th>Plant</th>
<th>Family</th>
<th>Active constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cephalotaxus harringtonia</td>
<td>Cephalotaxaceae</td>
<td>Homoharringtonine<sup>46</sup></td>
</tr>
<tr>
<td>2</td>
<td>Bleckeria vitensis & C.Sm.</td>
<td>Apocynaceae</td>
<td>1.Elliptinium<sup>50</sup>(Derivative of ellipticine)</td>
</tr>
<tr>
<td>3</td>
<td>Raphanus sativus L.</td>
<td>Brassicaceae</td>
<td>Olomucine<sup>43</sup></td>
</tr>
<tr>
<td>4</td>
<td>Thapsia garganica L.</td>
<td>Apiaceae</td>
<td>2.Thapsigargin<sup>51</sup>(Precursor of Roseovitine)</td>
</tr>
<tr>
<td>5</td>
<td>B. antidysenterica J.F. Mill</td>
<td>Simaroubaceae</td>
<td>Bruceantin<sup>43</sup></td>
</tr>
<tr>
<td>6</td>
<td>Betula Spp.</td>
<td>Betulaceae</td>
<td>3.Betulinic acid<sup>43</sup></td>
</tr>
<tr>
<td>7</td>
<td>Indigofera tinctoria</td>
<td>Leguminosae</td>
<td>5.Indirubins<sup>43</sup></td>
</tr>
<tr>
<td>8</td>
<td>Veratrum californium</td>
<td>Malanthiaceae</td>
<td>6.Cyclopamine<sup>44</sup></td>
</tr>
<tr>
<td>9</td>
<td>Brucea antidysenterica J.F. Mill</td>
<td>Simaroubaceae</td>
<td>3.Bruceantin<sup>43</sup></td>
</tr>
<tr>
<td>10</td>
<td>Betula Spp.</td>
<td>Betulaceae</td>
<td>3.Betulinic acid<sup>43</sup></td>
</tr>
<tr>
<td>11</td>
<td>Indigofera tinctoria</td>
<td>Leguminosae</td>
<td>5.Indirubins<sup>43</sup></td>
</tr>
<tr>
<td>12</td>
<td>Veratrum californium</td>
<td>Malanthiaceae</td>
<td>6.Cyclopamine<sup>44</sup></td>
</tr>
<tr>
<td>13</td>
<td>Batrachium Fisch.</td>
<td>Simaroubaceae</td>
<td>3.Bruceantin<sup>43</sup></td>
</tr>
<tr>
<td>14</td>
<td>Coffea canephora</td>
<td>Rubiaceae</td>
<td>Caffeic acid<sup>46</sup></td>
</tr>
<tr>
<td>15</td>
<td>C. arabica</td>
<td>Rubiaceae</td>
<td>Caffeic acid<sup>46</sup></td>
</tr>
</tbody>
</table>

Extracts of some plants having anticancer activity:

1. Extract of <i>Iris tectorum</i>⁴⁶
 - **Biological Source**: Rhizomes of <i>Iris tectorum</i> Maxim.
 - **Family**: Iridaceae
 - **Syn.**: Japanese Roof Iris

2. Anticancer activity of plants of <i>Scutellaria</i> genus⁴⁶
 - **Biological Source**: <i>Scutellaria orientalis</i> ssp.Carica
 - **Family**: Labiatae
 - **Species**:
 - <i>S. barbata</i>
 - <i>S. baicalensis</i>
 - <i>S. rivularis</i>
3. Extracts of Mediterranean dietary plants

3.1. Extracts of plants:

<table>
<thead>
<tr>
<th>Name of the plant</th>
<th>LNCaP</th>
<th>MCF-7</th>
<th>ACHN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonchus oleraceus</td>
<td>NA</td>
<td>4.40 ± 0.13</td>
<td>NA</td>
</tr>
<tr>
<td>Capparis spinosa</td>
<td>NA</td>
<td>65.79 ± 1.15</td>
<td>77.69 ± 1.25</td>
</tr>
<tr>
<td>Carum carvi</td>
<td>NA</td>
<td>17.52 ± 0.36</td>
<td>NA</td>
</tr>
<tr>
<td>Chichorium intybus</td>
<td>NA</td>
<td>3.67 ± 0.12</td>
<td>NA</td>
</tr>
<tr>
<td>Cichorium pycnocephalum</td>
<td>NA</td>
<td>30.78 ± 0.75</td>
<td>14.93 ± 0.29</td>
</tr>
<tr>
<td>Capparis sicula</td>
<td>NA</td>
<td>6.39 ± 0.19</td>
<td>NA</td>
</tr>
<tr>
<td>Cynara cardunculus</td>
<td>NA</td>
<td>5.46 ± 0.31</td>
<td>NA</td>
</tr>
<tr>
<td>Cichorium intybus</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Capparis sicula ssp</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note: NA = no activity; MCF-7: human breast cancer cells; LNCaP: human prostate cancer cells; ACHN: renal cell adenocarcinoma; C32: amelanotic melanoma cells.

4. Anti-cancer activity of coix seed extract

Biological source: Coix lacryma-jobi
Family: Poaceae
Syn.: Job’s Tears adlay, or adal, Coixseed

Coix seed extract inhibit FAS activity. The other mechanism of action of Coix seed extract, as a
(1) Experiments showed that the extract inhibits the mitosis of tumor cells during the G2/M phases
(2) Leads apoptosis of tumor cells
(3) Up-regulate FAS/Apo-1 gene expression and down-regulating Bcl-2 gene expression thus affects the genetic expression of tumor cells
(4) Inhibits tumor angiogenesis

5. Antiproliferative action of methanolic extract of Geum quellyon Sweet roots

Biological source: Dried roots of Geum quellyon
Family: Rosaceae
Syn.: Geum chilense

Cause DNA fragmentation and cellular membrane breakage

6. Anticancer activity of extract of Pereskia bleo (kunth) DC against Breast carcinoma T-97D cell lines

Biological source: Dried leaves and stem of Pereskia bleo (kunth) DC
Family: Cactaceae
Dose: EC₅₀ 2.0 µg/ml

It shows its anticancer activity by inducing apoptosis in the cancerous cells

7. Bark water extract of Uncaria tomentosa (Willd.) DC

Biological source: Bark of Uncaria tomentosa
Family: Rubiaceae
Syn.: Cat’s claw, Vilcacora

Water extracts showed delayed-type apoptosis. One of the main constituents of extract is ursolic acid which has very strong anti proliferative properties and induces apoptosis in various human cancer cell lines like: A549 (lung cancer), SK-OV-3 (ovary cancer), SK-MEL-2 (skin cancer), FX948 (brain tumor), HCT-15 (leukemia) and B16-F-0 (melanoma).

Some other plants having ursolic acid and anticancer activity

APPLE
Biological source: Pomaceous fruit
Family: Rosaceae

CONCLUSION:
Plants have been important source of highly effective conventional drugs for the treatment of different types of cancer. In many cases it has been found that actual compounds isolated from the plants may not serve as the drug, but leads to the development of potential anticancer agents. With the development of new drug delivery system, the ability to attach anticancer agent to carrier molecules directed to the specific tumor site, of highly cytotoxic natural products to the tumor avoiding their toxic side effects on the normal cells. Also the compounds having minimum structural feature like

REFERENCES:
17. Grove MD, Spencer GF, Ruhweder WK, Mandava NB, Worley JF, Warthen Jr. JD, Steffen GL,